Glossary

Filter:
# A B C D E F G H I J K L M N O P Q R S T U V W X Y Z All
A
A1
AC
ACD
ACK
ACL
ACU
A-D
Ada
ADC
ADH
ADM
ADP
AE
AES
AFJ
AFR
AI
AIG
AIN
AIS
AJ
AK
AKM
ALC
ALE
ALU
AMA
AMI
AMS
ANI
AOS
AP
APC
APD
APL
App
APU
AR
Arg
ARQ
ARS
ASU
AV
AVP
B
B
B1
B2
B3
BBS
BCC
BCD
BCI
Bd
BER
Bit
BIU
BPI
BPS
BR
BSA
BSE
Bug
Bus
BW
C
C*
C1
C2
C3
C3I
C4
CA
Can
Cat
CBA
CBC
CCB
CCI
CCO
CDR
CDS
CF
CFD
CFE
CI
CIA
CIK
CIP
CK
CKG
CKL
CM
CMP
CMS
CN
CNK
COR
CPC
Cpi
CPS
CPU
CRB
CRC
CRO
CRP
CSA
CSC
CSE
CSM
CSO
CSS
CTY
CUP
CVA
CWC
D
D&V
D-A
DAA
DAC
DAU
DC
DCA
DCP
DCS
Dd
DDD
DDN
DDS
DDT
DEC
DED
DES
DF
DIB
DID
Die
DIP
DLE
DMA
DO
Doc
DOD
DOE
DON
DOS
DP
DPB
DPL
DS
DSN
DSU
DTD
DTE
DTS
DUA
E
EAM
EAP
ECM
EDM
EEI
EFD
EFT
EIF
EMS
ENQ
EOF
EOL
EOT
EOU
EPL
Era
ES
ESS
ETB
ETL
ETX
EV
Exa
EXE
F
Fan
FAQ
FAX
FCA
FDM
FEC
FER
FIN
Fix
FOI
FQR
FQT
FRD
Fry
FSD
FTS
H
H
Hat
HCF
HD
HDM
Hex
HF
HLL
Hog
HOL
Hop
HSM
HUS
Hz
I
I&A
I/O
IAC
Ice
ICU
IDN
IDS
IFF
II
IIS
IKE
ILS
IM
IMP
IN
Inc
INF
IOC
IP
IPC
IPM
IRC
IRK
IRM
IS
ISM
ISO
ISS
IT
ITF
ITM
ITS
L
LAN
LDB
LER
LKG
LLC
LMD
LME
LMI
Log
LOS
LP
LPC
LPD
LPI
LPT
Ls
LSI
M
M
MAC
MAN
MD5
MDC
Meg
MEP
MER
Mgt
MHS
MHz
MI
MIB
MLS
MOA
Mod
MOE
MOP
MOU
MRK
MRT
MSE
MTR
MTT
Mu
MUD
MUX
Mw
N
N
NAK
NAR
NBH
NCA
NCC
NCS
NEC
Net
NID
NII
NIL
NIU
NM
NP
NRZ
NSA
NSD
NSI
NSM
NSO
NSP
NTI
NTM
NTN
NXX
O
O&M
Ob
OCR
OEM
OMB
ONA
OPI
OPM
OPT
OR
ORD
OS
OSI
OSU
OTP
OTT
P
P&D
P3P
PA
PAA
PAD
PAE
PAL
PAP
PAX
PBD
PBX
PC
PCA
PCS
PCZ
PD
Pdl
PDN
PDR
PDS
PDU
PES
PIP
PIX
PKA
PKC
PL
PLA
PM
PMD
PMO
PMP
Pod
POM
Pop
PPL
PPN
PPS
Ps
PSL
PSN
PTR
PTT
PUC
PUT
PVC
PWA
PX
R
R&D
RAC
RAM
RAT
RC4
RD
RED
REL
RF
RFC
RFE
RFP
RKV
RL
RMR
RO
ROM
RPM
RQT
RSA
Rsh
RSN
RTI
RTM
RTS
Run
RWX
S
S
S&T
SAO
SAP
SAV
Say
SCG
SCI
SCP
SDR
Set
S-F
SFA
SI
SIG
SMM
SMO
SMU
SO
SOH
SON
SOS
SOW
SPK
Spl
SPO
SPS
Spy
SRI
SRP
SRR
SSE
SSO
SSR
STD
STI
STS
STU
STX
SUB
SYN
T
T&E
TA
TAG
Tap
Tar
TCB
TCD
TCS
TCU
TD
TDM
TED
Tee
TEI
TEK
TEP
TFM
TFS
TLA
TLS
TMC
TNI
Toy
TPC
TPI
TRB
TRR
TSK
Tty
TV
TWX
U
U
UA
UBD
UIS
UK
Up
UPP
URL
UV
W
WAN
Win
WPA
Bignum*
  • [orig. from MIT MacLISP] [techspeak] A multiple-precision computer representation for very large integers.
  • More generally, any very large number. "Have you ever looked at the United States Budget? There's bignums for you!"
  • [Stanford] In backgammon, large numbers on the dice especially a roll of double fives or double sixes (compare moby, sense 4). See also El Camino Bignum.
  • Sense 1 may require some explanation. Most computer languages provide a kind of data called `integer', but such computer integers are usually very limited in size; usually they must be smaller than than 2^(31) (2,147,483,648) or (on a bitty box) 2^(15) (32,768). If you want to work with numbers larger than that, you have to use floating-point numbers, which are usually accurate to only six or seven decimal places. Computer languages that provide bignums can perform exact calculations on very large numbers, such as 1000! (the factorial of 1000, which is 1000 times 999 times 998 times . times 2 times 1). For example, this value for 1000! was computed by the MacLISP system using bignums 40238726007709377354370243392300398571937486421071 46325437999104299385123986290205920442084869694048 00479988610197196058631666872994808558901323829669 9445909974245040870737599~23627727~73251977950 59509952761208749754624970436014182780946464962910 56393887437886487337119181045825783647849977012476 63288983595573543251318532395846307555740911426241 74743493475534286465766116677973966688202912073791 43853719588249808126867838374559731746136085379534 52422158659320192809087829730843139284440328123155 86110369768013573042161687476096758713483120254785 89320767169132448426236131412508780208000261683151 02734182797770478463586817016436502415369139828126 48102130927612448963599287051149649754199093422215 66832572080821333186116811553615836546984046708975 60290095053761647584772842~967964624494516076535 34081989013854424879849599533191017233555566021394 50399736280750137837615307127761926849034352625200 01588853514733161170210396817592151090778801939317 81141945452572238655414610628921879602238389714760 88506276862967146674697562911234082439208160153780 88989396451826324367161676217916890977991190375403 12746222899880051954444142820121873617459926429565 81746628302955570299024324153181617210465832036786 90611726015878352075151628422554026517048330422614 39742869330616908979684825901254583271